If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-15x-45=0
a = 1; b = -15; c = -45;
Δ = b2-4ac
Δ = -152-4·1·(-45)
Δ = 405
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{405}=\sqrt{81*5}=\sqrt{81}*\sqrt{5}=9\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-9\sqrt{5}}{2*1}=\frac{15-9\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+9\sqrt{5}}{2*1}=\frac{15+9\sqrt{5}}{2} $
| 2x-13+x+x+45=180 | | 3x+4=-17+4x | | 9(x+5)=-3+(x-39) | | 1/3x+5=3 | | 4x-3=2-7 | | -7/4=2/5v-7/3 | | 7(x-3)+24=-18 | | -.6x=3 | | 9-x=111 | | 93=8x-3 | | -10(x+6)+25x=-30 | | 1,2n=40 | | -8(x+3)-2x=26 | | 4(5x+10)-15x=20 | | -3(4x+8)+15x=36 | | 2(x-4+6x=48 | | .625x=3 | | 58-19=a | | | | 6(x-4)+30=6 | | -3y+5=-4y+89 | | -2(x+3)+4x=18 | | 0-8y=3 | | 9-3=q | | X+-50x=300 | | | | 68-41=z | | 1048.8=23*t | | 3w+9=5 | | -3(4x+6)+20=-10 | | 4(x+6)+4x=32 | | -11t=77 |